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Abstract Coagulation abnormalities,
ranging from a simple fall in platelet
count to full-blown disseminated in-
travascular coagulation, are a com-
mon occurrence in critically ill pa-
tients and have been associated with
increased mortality. In sepsis, acti-
vation of the extrinsic coagulation
pathway by tissue factor induces in-
creased coagulation, and simultane-
ous depression of the inhibitory
mechanisms of coagulation, and
suppression of the fibrinolytic system
results in a procoagulant state that
may lead to the formation of micro-
vascular thrombi disturbing organ
microcirculation and promoting the
development of organ dysfunction.
Many inflammatory mediators are
involved in the activation of coagu-
lation, but many coagulation proteins
are themselves actively involved in
the inflammatory process. In this ar-
ticle, we explore the complex rela-
tionship between inflammation and
coagulation and how improved un-
derstanding of this interaction has led
to the development of new therapeu-

tic agents for patients with severe
sepsis.

Introduction

As our knowledge of the pathophysiology of sepsis in-
creases, new and exciting therapeutic approaches come to
light. Although animal studies with innovative therapies
for sepsis may show promise, not all succeed into clinical
practice, as illustrated by the failure of randomized, pla-
cebo-controlled, clinical trials (RCTs). Recently, our fo-
cus has turned to coagulation abnormalities in sepsis and

the links between coagulation and inflammation. This
review briefly explores the role of the three natural anti-
coagulants, namely antithrombin (AT, formerly anti-
thrombin III), activated protein C (APC), and tissue factor
pathway inhibitor (TFPI) in sepsis. All three molecules
have recently been the subject of large RCTs [1, 2, 2a].
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A different view of coagulation

Recently, our understanding of the coagulation system
has changed from the classical ‘cascade’ model [3, 4] to a
cell-based model of hemostasis [5], where tissue factor
(TF), complexed with factor VIIa on membrane surfaces,
is now known to be the major initiator of in vivo coag-
ulation, followed by massive amplification of thrombin
generation by the pro-thrombinase complex (factor Xa
and factor Va) [6], an event that takes place on activated
platelet membranes (Fig. 1).

Initiation and amplification of blood coagulation

Initiation of coagulation takes place when TF is exposed,
such as by fibroblasts, when there is tissue damage or by
cytokine-stimulated monocytes and endothelial cells [7],
as in sepsis. While TF is the major initiator of coagulation,
endotoxin, foreign bodies, and negatively charged parti-
cles may initiate coagulation via contact system activation.
TF binds to factor VIIa, and this complex (TF:VIIa) may
then activate factor X and factor IX [8]. Factor Xa, asso-
ciated with factor Va, forms the prothrombinase complex,
which subsequently turns prothrombin into thrombin. Fac-

tor IX activation amplifies the clotting reaction via inter-
action with the cofactor, factor VIII, which accelerates
factor X activation. Thus, we see that initiation is depen-
dent on the presence of both TF and factor VIIa.

Most of factor VII circulates as the zymogen (inactive
form), leaving normal plasma with 1% of factor VIIa [9].
Once bound to TF, the zymogen is rapidly converted to
factor VIIa via limited proteolysis [10]. Thus TF:VIIa
may be formed in two different ways: first, TF may be
complexed with factor VIIa already present in plasma;
second, TF may bind factor VII with subsequent con-
version to factor VIIa. Many proteases can activate the
latter reaction, but it is unclear which is the most im-
portant in vivo, although factor Xa is considered the most
likely candidate [11]. Importantly, although TF:VIIa can
catalyze the reaction itself [12], this cannot occur outside
a membrane surface, such as with soluble TF [13].

After initiation in TF-bearing cells, amplification of
thrombin production takes place on the platelet surface.
The essential steps in this phase are accomplished by the
thrombin formed in the initiating phase, as it enhances
platelet adhesion [14], and activates platelets [15] and
factors V, VIII and XI [16]. Activated platelets also re-
lease factor IX [17]. Now the scene is set for massive
thrombin formation. Factors V, VIII, IX, and X are pres-

Fig. 2 The relationship between inflammation and coagulation
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ent on the activated platelet surface, protected from in-
hibition by plasma proteases, and can produce thrombin
that will turn fibrinogen into fibrin, and also exert posi-
tive feedback on its own pathway, by activating factors
V, VIII, and XI.

Fibrin production and degradation

Thrombin will now cleave fibrinogen, producing fibrin
[18]. Thrombin also activates factor XIII, which stabilizes
the fibrin clot by creating cross-links that render it more
resistant to plasmin-driven degradation [19]. Another im-
portant factor in the clot stabilization is the thrombin-
activatable fibrinolysis inhibitor (TAFI). This protein also
limits plasmin activity by removing from fibrin amino-
acids that are essential for plasmin binding [20].

Degradation of the fibrin clot is performed by plasmin
[21], which is generated from an inactive zymogen form,
plasminogen, by the action of a series of proteases known

as plasminogen activators [22], such as tissue-type plas-
minogen activator (t-PA) and urokinase-type plasminogen
activator (u-PA), which is the principal plasminogen ac-
tivator in the extracellular space, e.g., within the alveoli
[23]. This system may be inhibited at two points: first
by the plasminogen-activator inhibitor-1 (PAI-1), which
binds to t-PA and u-PA; and second by a2-antiplasmin,
which binds to plasmin.

Modulating coagulation

The process of initiating and amplifying coagulation is
tightly regulated by the anticoagulant systems. The initi-
ating phase is regulated mainly by TFPI, while the am-
plification phase is controlled both by AT and the APC
pathway. TFPI inhibits the factor VIIa/TF complex before
enough factor Xa is produced for hemostasis [24]; this
reaction is greatly facilitated after TFPI has complexed
with factor Xa [25]. Importantly, factor Xa cannot leave

Fig. 1 Schematic representation of coagulation system initiation and activation
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the cell surface, as it is rapidly inhibited by TFPI or AT;
thus only minute amounts of thrombin are formed during
this period. This process seems to work as a ‘yes’ or ‘no’
reaction. That is, if the stimulus to produce thrombin is
enough, TFPI, in physiologic amounts, will retard the
process, but the same final concentration of thrombin will
be formed as if there was no TFPI. On the other hand, if
TFPI is present, but TF is absent or present in only limited
amounts, no thrombin will be produced [6].

AT inhibits several procoagulant factors, such as
thrombin, factors Xa, IXa, VIIa, and XIIa [26]. The an-
ticoagulant action of AT is greatly enhanced by specific
acid pentasaccharide moieties found on heparinoids, such
as glycosaminoglycans (GAG), present on endothelial
membranes or exogenous heparin [26]. Factor Xa is
protected from inactivation by AT when in a membrane-
associated complex with factor Va [27].

The APC pathway starts when thrombin binds to
thrombomodulin (TM) on vascular endothelium surfaces
[28]. This complex then activates the plasma zymogen,
protein C [29], producing APC. This process of APC
generation is enhanced by an endothelial cell protein re-
ceptor (EPCR) [30]. On endothelial surfaces, APC, in-
teracting with protein S, catalyzes the inactivation of
factors Va and VIIIa [29], thus stopping thrombin for-
mation. It is interesting to notice that after binding to TM,
thrombin not only loses fibrin formation properties, but
also exerts negative feedback on its own pathway.

APC may have a role in fibrinolysis. First, by lowering
thrombin production, fibrin production is also lowered;
second, APC may form a tight complex with PAI-1 [31],
protecting t-PA from inactivation. APC also is the prin-
cipal inhibitor of TAFI since APC is a potent inhibitor of
thrombin generation. Blockade of thrombin generation by
APC prevents TAFI activation, thereby promoting fi-
brinolysis [32].

Links between coagulation and inflammation

The relationship between coagulation and inflammation is
complex and, as yet, not completely understood (Fig. 2).
It is known that blood clotting not only leads to fibrin
deposition and platelet activation, but it also results in
vascular cell activation, which contributes to leukocyte
activation [33]. On the other hand, inflammation can in-
duce TF expression in monocytes, via nuclear factor
kappa-B (NF-kB) activation, thus initiating coagulation
[7].

Examples of this interaction are readily seen. First,
leukocytes are found at relatively high concentrations in
venous thrombi, and leukocytes and activated platelets
can form rosettes mediated by P-selectin expression on
the surface of the activated platelet [34, 35]. These mi-
croscopic observations are probably elicited from the
actions of thrombin, which can activate platelets and

endothelium, increasing the surface expression of P-se-
lectin [36, 37]. P-selectin is the primary initial mediator of
leukocyte-endothelial cell rolling and is critical for leu-
kocyte adhesion. Second, TF:VIIa and factor Xa have
been shown to activate cells and generate responses
similar to those mediated by thrombin [33]. Third, GAG
and TM expression on cell surfaces are inhibited by in-
flammatory cytokines [38, 39, 40, 41] and lipopolysac-
charide (LPS) [42], thus blocking the augmentation of AT
action by GAG, and APC formation by TM.

Anti-inflammatory properties of natural anticoagulants

TFPI

TFPI has been shown to attenuate IL-6 and IL-8 release in
an animal model [43]. However, in studies on volunteers
receiving small doses of endotoxin, TFPI prevented the
endotoxin-induced activation of coagulation, but had no
effect on inflammatory mediators or on leukocyte and
endothelial cell activation [44, 45]. TFPI can also com-
pete with LPS binding protein (LBP) and bind LPS, re-
sulting in attenuation of LPS stimulation. This LPS neu-
tralizing activity is demonstrable in experimental settings,
but its potential clinical significance remains uncertain
[46].

Antithrombin

Binding of AT to GAG has been reported to induce
prostacyclin formation in a time- and concentration-de-
pendent manner [47, 48]. Prostacyclin can inhibit cyto-
kine production and leukocyte activation, which might be
responsible for the observed effects of AT in inhibiting
leukocyte adhesion and changing vascular permeability
[49, 50]. The in vitro production of tumor necrosis factor-
alpha (TNF-a) and IL-1 is inhibited by AT, but only at
high concentrations; lower concentrations may, in fact,
enhance TNF-a synthesis [51]. The inhibition of thrombin
may block the above-described pro-inflammatory actions
of this molecule.

APC

In animal models, APC has been shown to block the
production of TNF, both in the circulation [52] and in
tissues [53, 54]. Inhibition of the APC pathway has also
been shown to exacerbate cytokine responses [55, 56].
Like AT, APC blocks thrombin action by shutting down
its pathway. APC may have other anti-inflammatory ef-
fects by blocking NF-kB in monocytes [57] as well as in
endothelial cells [58], thus blocking a fundamental path-
way for production of inflammatory cytokine and ex-
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pression of adhesion molecules [59]. APC may also block
genes that are upregulated in inflammation, such as those
expressing adhesion molecules and oxidative enzymes,
and increase the expression of antiapoptotic genes [58].
Thus, APC not only regulates the negative feedback on
thrombin generation, but also has direct effects on the
production of inflammation-related molecules.

What’s going on in sepsis?

It has been known for a long time that sepsis is one of the
causes of disseminated intravascular coagulation (DIC)
[60], but only recently more subtle abnormalities in co-
agulation are being recognized. It is important to note that
the ideas that follow are based on patients that have not as
yet developed clinical DIC. These data are summarized in
Table 1.

The activation of coagulation in sepsis can be dem-
onstrated by the increased levels of TF [61], and the low
levels of FVII, indicating consumption [62]. TFPI ex-
pression is only slightly augmented by endotoxin stimu-
lation [63, 64], so that the enhanced production of TF may
trigger coagulation.

Amplification systems are also activated, as reflected
by high levels of prothrombin fragments 1 and 2 (F1+2)
[61, 65], and thrombin-antithrombin (TAT) in sepsis [66,
67]. Thrombin is being generated and antagonized by AT,
resulting in low blood AT levels in most patients [62, 65,
66, 67, 68, 69, 70]. In addition to consumption, destruc-
tion of AT by leukocyte proteases may also occur [71].

Protein C levels are also diminished in sepsis [62, 67,
68, 70, 72], especially in the non-survivors [72, 73, 74].
Low protein C levels may be due to consumption, and
to reduced levels of TM in the cell surface [40, 41, 42],
impairing its activation. Although TM levels in plasma
(soluble TM) are usually elevated [75], they probably do
not represent enhanced TM production or secretion, but
rather cell damage [76] and decreased TM expression in
vascular endothelium [42]. Importantly, this soluble form
of TM is not capable of activating protein C efficiently.

Gando et al. [75] demonstrated that increases in solu-
ble TM precede the decrease in fibrinogen and the pro-
longation of prothrombin time in septic patients. Hence,
increased soluble TM levels may be related to decreased
TM activity in cell surfaces, leading to decreased APC
production.

TAFI is also activated (TAFIa) by the thrombin-TM
complex [77], a reaction which is much faster than the
activation of protein C. Thus at low TM concentrations,
the production of TAFIa is higher than APC [78], and the
milieu therefore becomes anti-fibrinolytic.

Thrombin activation is followed by fibrin formation,
which is then degraded, as demonstrated by increased
levels of D-dimer [79, 80]. This is performed by plas-
minogen activators, and increased levels of t-PA have
been documented in sepsis [68, 69, 70], although its ef-
fects are counterbalanced by increased plasminogen-ac-
tivator inhibitor-1 (PAI-1) levels [67, 68, 69, 81]. In fact,
t-PA and PAI-1 levels are even higher in non-survivors
[62, 68, 74], and tend to normalize in survivors [74].
Thus, it seems that fibrinolysis, although activated, is not
sufficient to counteract fibrin formation. Increased fibrin
formation associated with impaired fibrinolysis may
contribute to both organ damage and mortality in sepsis
[82].

Abnormal liver function, a common occurrence in pa-
tients with sepsis, can also influence coagulation, with
decreased synthesis of coagulation proteins and reduced
clearance of activated factors and enzyme:inhibitor com-
plexes, quantitative and qualitative platelet defects, hy-
perfibrinolysis, and accelerated intravascular coagulation
[83]. Liver disease is also commonly associated with vi-
tamin K deficiency that can lead to a further reduction of
plasma levels of factors II, VII, IX, and X, and proteins C
and S, which require vitamin K as a co-factor for g-car-
boxylation of glutamic acid residues in their amino-ter-
minal region [83].

Although understanding of the basic mechanisms of
coagulation and its derangements in sepsis is crucial for
the development of new therapeutic strategies, the ratio-
nal sequence of fibrin formation, leading to vascular oc-
clusion and multiple organ dysfunction has not been
clearly demonstrated so far. A more in-depth review on
this area is beyond the scope of this paper and can be
found elsewhere [84].

Table 1 Coagulation abnormalities in sepsis. Refer to text for
references. (PAP plasmin-antiplasmin complexes)

Sepsis Septic shock Non-survivorsa

Initiation
TF " " -b

Factor VII # # -
Amplification
TAT " " -
F 1+2 " " -
Fibrinolysis
D-dimer " " -
t-PA " " Higher
Plasminogen # # Lower
PAI-1 " " Higher
a2-antiplasmin Normal Normal Lower
PAP " " -
TFPI
Plasma " No data -
Membranec # No data -
AT # # Lower
APC # # Lower
Protein S Normal # -
a When differences between survivors and non-survivors were
observed
b Indicates that no data are available
c Laboratory data only
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Administration of exogenous anticoagulants in sepsis

TFPI

A large RCT failed to show a reduced mortality in pa-
tients with severe sepsis 2a. A possible explanation for
the failure of this trial is that the intervention comes too
late, when coagulation has already been initiated, and
amplification has developed, a phase in which TFPI may
not have enough anticoagulant activity [6, 85], especially
because factor Xa bound to platelets is relatively pro-
tected from TFPI activity [5]. As mentioned before, TFPI
has not been shown to possess anti-inflammatory prop-
erties in human volunteers treated with endotoxin [44,
45].

AT

Another RCT including 2,314 patients, randomized to
receive either placebo or AT over 4 days, led to nearly
identical mortality rates in both groups (38.9% AT vs
38.7% placebo; P=ns) [2].

Several explanations can be found [86]. First, animal
studies have shown that the anti-inflammatory properties
of AT are exerted by binding to membrane surface GAG
[47, 48], and the endothelium is deficient in GAG in
sepsis [38, 39]. This seems to be the most important
mechanism of AT advantage in animal models, because
heparin, by competing for AT with GAG, reduces the
relative advantage of ATIII [47, 48]. Indeed, the subgroup
of patients that did not receive heparin seemed to have
mortality reduction in the trial (15% relative risk reduc-
tion by AT therapy at 90 days follow up; P<0.05) [2].
Second, although AT can block thrombin activity, in the
doses used it is not capable of reducing thrombin gener-
ation, a pathway that is only inhibited by higher doses of
AT or by APC [87]. Therefore, continued thrombin gen-
eration may maintain the coagulation process as well as
the associated inflammatory response.

APC

In another placebo-controlled trial, administration of ex-
ogenous recombinant human APC (drotrecogin-alfa [ac-

tivated]) led to a 6.1% reduction in the absolute risk of
death (19.4% relative risk reduction) in patients with se-
vere sepsis over 28 days of follow up [1]. This recom-
binant human form of APC (rhAPC) was administered to
850 patients while 840 patients received placebo along
with standard care for sepsis. The agent was given by
continuous intravenous infusion for 4 days at 20 �g·kg·h.
The therapy was remarkably well tolerated, except for
excess bleeding, particularly following invasive proce-
dures. The incidence of severe hemorrhage (defined as
bleeding that necessitated >3 units of blood/day for two or
more days or any significant intracranial bleeding) was
3.5% in the rhAPC group and 2.0% in the placebo group
(P=0.06). There was no increased incidence of secondary
infections, allergic reactions, or other side effects in the
treatment group compared with placebo. Patients who
received rhAPC also showed a decrease in D-dimer for-
mation and IL-6, demonstrating both the anticoagulant
and the anti-inflammatory properties of the drug.

APC is, so far, the only natural anticoagulant that has
demonstrated direct activity in blocking thrombin for-
mation, enhancing fibrinolysis, and diminishing the ex-
pression of inflammatory molecules. These combined
actions offer a survival advantage in patients treated with
APC. This drug, now known by the trade name Xigris,
received regulatory approval by the Food and Drug Ad-
ministration in the USA in November 2001. The drug is
indicated for severe sepsis (i.e., APACHE II�25 or �2
organ dysfunctions).

Conclusion

The evolution in our understanding of the basic mecha-
nisms underlying coagulation and sepsis, as well as the
realization of the interaction between these systems, has
led to the development of several potential new agents for
the treatment of severe sepsis. Among these, drotrecogin
alfa (activated) has been shown to improve outcome and
is the first agent to be commercialized. This exciting
development has added new impetus to the continuing
search for other agents to expand our (rather limited)
armamentarium.
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